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Differential Entropy - 2

Definitions

AEP for Continuous Random Variables

Relation of differential entropy to discrete entropy

Joint and Conditional Differential Entropy

Relative Entropy and Mutual Information

Estimation Counterpart of Fano’s Inequality
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Joint and conditional differential entropy

Definition

The joint differential entropy of X1, X2, ..., Xn with pdf f(x1, x2, . . . , xn)
is

h(X1, X2, . . . , Xn) = −
∫
f(xn) log f(xn)dxn.

Definition

If X, Y have a joint pdf f(x, y), the conditional differential entropy
h(X|Y ) is

h(X|Y ) = −
∫
f(x, y) log f(x|y)dxdy = h(X,Y )− h(Y ).

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING November 24, 2020 3 / 16



Entropy of a multivariate Gaussian

Definition ( Multivariate Gaussian Distribution)

If the joint pdf of X1, X2, . . . , Xn satisfies

f(x) = f(x1, . . . , xn) =
1

(
√
2π)n|K|1/2

exp

(
−1

2
(x− µ)TK−1(x− µ)

)
,

then X1, X2, . . . , Xn are multivariate/joint Gaussian/normal distributed
with mean µ and covariance matrix K. Denote as
(X1, X2, . . . , Xn) ∼ Nn(µ,K).

Theorem (Entropy of a multivariate normal distribution)

Let X1, X2, . . . , Xn have multivariate normal distribution with mean µ
and covariance matrix K. Then

h(X1, X2, . . . , Xn) = h(Nn(µ,K)) =
1

2
log(2πe)n|K| bits,

where |K| denotes the determinant of K.
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Relative entropy and mutual information

Definition

The relative entropy D(f ||g) between two pdfs f and g is

D(f ||g) =
∫
f log

f

g
.

Note: D(f ||g) is finite only if the support set of f is contained in the
support set of g.

Definition

The mutual information I(X;Y ) between two random variables with joint
pdf f(x, y) is

I(X;Y ) =

∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy.
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Relative entropy and mutual information

By definition, it is clear that

I(X;Y ) = h(X)− h(X|Y ) = h(Y )− h(Y |X) = h(X) + h(Y )− h(X,Y ).

and

I(X;Y ) = D
(
f(x, y)

∣∣∣∣∣∣f(x)f(y)).
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Mutual information between correlated Gaussian r.v.s

Let (X,Y ) ∼ N (0,K), where

K =

[
σ2 ρσ2

ρσ2 σ2

]
.

h(X) = h(Y ) = 1
2 log(2πe)σ

2

h(X,Y ) = 1
2 log(2πe)

2|K| = 1
2(log 2πe)

2σ4(1− ρ2)
I(X;Y ) = h(X) + h(Y )− h(X,Y ) = −1

2 log(1− ρ
2)

if ρ = 0, X and Y are independent, the mutual information is 0.

if ρ± 1, X and Y are perfectly correlated, the mutual information is
infinite.
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Theorem

D(f ||g) ≥ 0 with equality iff f = g almost everywhere.

Proof.

Let S be the support set of f. Then

−D(f ||g) =
∫
S
f log

g

f

≤ log

∫
S
f
g

f
(by Jensen’s inequality)

= log

∫
S
g

≤ log 1 = 0
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Properties of differential entropy

I(X;Y ) ≥ 0 with equality iff X and Y are independent.

h(X|Y ) ≤ h(X) with equality iff X and Y are independent.

Theorem (Chain rule for differential entropy)

h(X1, X2, . . . , Xn) =

n∑
i=1

h(Xi|X1, X2, ..., Xi−1).

h(X1, X2, . . . , Xn) ≤
∑
h(Xi), with equality iff X1, X2, . . . , Xn are

independent.
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Properties of differential entropy

Theorem (Translation does not change the differential entropy)

h(X + c) = h(X).

Theorem

h(aX) = h(X) + log |a|.

Proof.

Let Y = aX, Then fY (y) =
1
|a|fX(ya), and we have

h(aX) =−
∫
fY (y) log fY (y)dy = −

∫
1

|a|
fX(

y

a
) log

(
1

|a|
fX

(y
a

))
dy

= −
∫
fX(x) log fX(x)dx+ log |a| = h(X) + log |a|
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Properties of differential entropy

Theorem (Translation does not change the differential entropy)

h(X + c) = h(X).

Theorem

h(aX) = h(X) + log |a|.

Corollary.

h(AX) = h(X) + log | det(A)|.
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Multivariate Gaussian maximizes the entropy

Theorem

Let the random vector X ∈ Rn have zero mean and covariance
K = EXXt (i.e., Kij = EXiXj , 1 ≤ i, j ≤ n). Then

h(X) ≤ 1

2
log(2πe)n|K|

with equality iff X ∼ N (0,K).
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Random variable X, estimator X̂. The expected prediction error
E(X − X̂)2.

Theorem (Estimation error and differential entropy)

For any random variable X and estimator X̂,

E(X − X̂)2 ≥ 1

2πe
exp

(
2h(X)

)
,

with equality iff X is Gaussian and X̂ is the mean of X.
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Theorem (Estimation error and differential entropy)

For any random variable X and estimator X̂,

E(X − X̂)2 ≥ 1

2πe
exp

(
2h(X)

)
,

with equality iff X is Gaussian and X̂ is the mean of X.

Proof.

We have

E(X − X̂)2 ≥ min
X̂

E(X − X̂)2

= E(X − E(X))2 mean is the best estimator

= Var(X)

≥ 1

2πe
exp

(
2h(X)

)
. The Gaussian has maximum entropy
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Summary

Discrete r.v. ⇒ continuous r.v.

entropy ⇒ differential entropy.

Many things similar: mutual information, relative entropy, AEP, chain
rule, ...
Some things different: h(X) can be negative, maximum entropy
distribution is Gaussian

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING November 24, 2020 15 / 16



Reading & Homework

Reading: Whole Chapter 8

Homework: Problems 8.3 (a,b), 8.5, 8.9
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